New DM1 Myotonic Dstrophy Drug in Development

Audentes Therapeutics Expanding Treatment Candidates for Duchenne MD and Myotonic Dystrophy Type 1

 
Audentes Therapeutics Expanding Treatment Candidates for Duchenne MD and Myotonic Dystrophy Type 1
 

Audentes Therapeutics is expanding its pipeline of potential molecular therapies, expecting to address 80% of patients with Duchenne muscular dystrophy (DMD) and all with myotonic dystrophy type 1 (DM1).

The treatment strategy, called vectorized exon skipping, uses a modified adeno-associated virus (AAV) to deliver antisense oligonucleotides (ASOs) — small molecules complementary to the RNA sequence — to skip over mutated exons, the bits of DNA that contain the information to generate proteins. Such an approach leads to the production of functional and full-length proteins.

According to Audentes, this strategy may be superior in DMD to microdystrophin gene replacement approaches, which produce shorter-than-normal dystrophin — the protein missing in these patients — with potentially less durable clinical benefits. Also, it may be more beneficial than current ASO therapies, whose efficacy is limited by poor distribution in muscle tissue.

“Today’s announcement represents a significant step forward in expanding our scientific platform and deepening our pipeline of product candidates for neuromuscular diseases with high unmet medical need,” Matthew R. Patterson, Audentes chairman and CEO, said in a press release.

Patterson also said Audentes believes that this strategy, combined with the company’s large-scale current good manufacturing practice (CGMP) manufacturing capability, “can deliver best-in-class therapies for the treatment of [DMD] and [DM1].”

The Muscular Atrophy News forums are a place to connect with other patients, share tips and talk about the latest research. Check them out today!

To accelerate these programs, Audentes reached a licensing agreement and will partner with the Nationwide Children’s Hospital, as well as two of its experts on neuromuscular diseases — Kevin M. Flanigan, MD and Nicolas S. Wein, PhD.

“We are excited to be collaborating with Audentes to advance these novel, highly differentiated approaches for DMD and DM1,” said Flanigan, director of Nationwide Children’s Center for Gene Therapy.

Audentes and Nationwide Children’s are collaborating to develop AT702, a treatment candidate designed for skipping of exon 2 of the DMD gene — which codes for dystrophin — in patients with exon 2 duplications and mutations in exons 1-5.

In mouse models, AT702 led to dose-dependent increases in production of full-length or near-full-length dystrophin and improvements in muscle function. The company expects to start a Phase 1/2 trial of AT702 at Nationwide Children’s in the fourth quarter of 2019.

Audentes is also conducting preclinical studies of two other vectorized exon-skipping candidates known as AT751 and AT753. These investigational treatments are intended for DMD patients with genotypes amenable for skipping of exons 51 and 53. Both AT751 and AT753 use the same viral vector backbone as AT702, enabling a potentially quicker clinical development, the company says.

Overall, these three potential therapies target over 25% of patients with DMD, with the company planning to leverage its exon-skipping platform to cover up to 80% of DMD patients.

Besides DMD, Audentes and Nationwide Children’s are assessing vectorized RNA suppression and vectorized exon skipping for DM1.  Both strategies have been validated in studies with ASOs and intend to prevent the buildup of toxic RNA of the DMPK protein in cells, a hallmark of DM1.

The company is currently conducting preclinical studies and expects to file an investigational new drug application in the U.S. for its selected DM1 treatment candidate, AT466, in 2020.

Audentes’ current manufacturing capability enables global commercialization of AT132, a potential therapy for X-linked myotubular myopathy and the company’s lead program, as well as continued clinical development of its pipeline programs. The facility is designed for an eightfold expansion of its production capacity.

Audentes recently hosted a conference call and a webcast on the expansion of its AAV technology as well as the DMD and DM1 programs. A replay of the webcast and slides can be found here.

 
 
José is a science news writer with a PhD in Neuroscience from Universidade of Porto, in Portugal. He has also studied Biochemistry at Universidade do Porto and was a postdoctoral associate at Weill Cornell Medicine, in New York, and at The University of Western Ontario in London, Ontario, Canada. His work has ranged from the association of central cardiovascular and pain control to the neurobiological basis of hypertension, and the molecular pathways driving Alzheimer’s disease.
 
follow me
  •  
Print Friendly, PDF & Email

The Journey of a Marathon Sleeper

A marathon sleeper who got away left some clues for Emory and University of Florida scientists to follow. What they found could provide benefits for patients with the genetic disease myotonic dystrophy (DM) and possibly the sleep disorder idiopathic hypersomnia (IH).

The classic symptom for DM is: someone has trouble releasing their grip on a doorknob. However, the disease does not only affect the muscles. Clinicians have recognized for years that DM can result in disabling daytime sleepiness and sometimes cognitive impairments. At the Myotonic Dystrophy Foundation meeting in September, a session was held gathering patient input on central nervous system (CNS) symptoms, so that future clinical trials could track those symptoms more rigorously.

Emory scientists are investigating this aspect of DM. Cell biology chair Gary Bassell was interested in the disease, because it’s a triplet repeat disorder, similar to fragile X syndrome, yet the CNS mechanisms and symptoms are very different. In DM, an expanded triplet or quadruplet repeat produces toxic RNA, which disrupts the process of RNA splicing, affecting multiple cell types and tissues.

Rye at San Francisco myotonic dystrophy meeting. Photo courtesy of Hypersomnia Foundation.

Neurologist and sleep specialist David Rye also has become involved. Recall Rye’s 2012 paper in Science Translational Medicine, which described a still-mysterious GABA-enhancing substance present in the spinal fluid of some super-sleepy patients. (GABA is a neurotransmitter important for regulating sleep.)

In seven of those patients, his team tested the “wake up” effects of flumazenil, conventionally used as an antidote to benzodiazepines. One of those patients was an Atlanta lawyer, whose recovery was later featured in the Wall Street Journal and on the Today Show. It turns out that another one of the seven, whose alertness increased in response to flumazenil, has DM.

In an overnight sleep exam, this man slept for 12 hours straight – the longest of the seven. But an IH diagnosis didn’t fit, because in the standard “take a nap five times” test, he didn’t doze off very quickly. He became frustrated with the stimulants he was given and sought treatment elsewhere, Rye says. Lab Land doesn’t have all the details of this patient’s history, but eventually he was diagnosed with DM, which clarified his situation.

More recently, Rye and his team have treated a small number (3) of DM patients with GABA antagonists — flumazenil or clarithromycin — with positive effects on alertness. Rye is collaborating with Andy Jenkins and Gary Bassell at Emory, and Eric Wang, a DM expert at the University of Florida.

Rye presented their findings both at the Myotonic Dystrophy Foundation meeting and at the World Sleep Congress in October. It appears that the RNA splicing perturbations in DM affect GABA receptors, and the GABA-enhancing substance is present too. That may produce a “double whammy” of sleepiness, according to Wang and Bassell.

Could scientists find hints to the identity of the GABA-enhancing “sleepy stuff” in IH by studying DM? Rye says:

“Additional basic science findings further suggest that there is much to be gained from examining hypersomnia through the lens of other disorders, especially one like myotonic dystrophy, whose genetics is well understood and where the field of scientists working on it is well developed. It’s a wonderful leveraging opportunity for two communities to inform one another.”

With the goal of treating more patients, Bassell, Jenkins, Wang and Rye are continuing this line of research, with the support of the Marigold Foundation. Jenkins – an expert on GABA receptors – has previously collaborated with Rye to study IH. The University of Florida has a cluster of DM expertise, including Laura Ranum, Andy Berglund and Maurice Swanson as well as Wang.

Bassell and his postdoc Anwesha Banerjee are collaborating with Rye and Wang to test the effects of GABA modulators in a nervous system-only mouse model of DM. Another strategy is to test antisense-style treatments – see below. Jenkins is examining the roots of the sensitivity of DM patients’ cells to anesthetics, a known problem leading to complications with anesthesia. Lab Land plans to learn more in the coming year.

Additional notes:

*While antisense-style drugs have been developed against SMA (spinal muscular atrophy) and DMD (Duchenne muscular dystrophy), Ionis Pharmaceuticals, which specializes in this type of drug, has reported setbacks in clinical trials aimed at treating muscle symptoms in myotonic dystrophy. The myotonic dystrophy community is actively working on the nervous system aspects for which no treatment is approved.At the MDF meeting (video here), several patients said they had tried modafinil.

*In human patients, the muscle weakness in DM can drive sleep apnea – so the sleepiness can be complex. Bassell’s nervous system-only mouse model could be helpful in dissecting the contributions of different tissues to sleep problems.

*Japanese and Polish scientists have observed that erythromycin, a chemical relative of clarithromycin, is effective in a DM mouse model, although the mechanism may be different and erythromycin is known to have cardiac side effects.

Print Friendly, PDF & Email

Hypersomnia Foundation and Myotonic Dystrophy

Viewing Hypersomnias through the Lens of Myotonic Dystrophy

The improving the lives of people living with

  • Our DNA is the genetic code that our cells use to instruct them in how to make proteins, when and where to make them, and how much protein to make.
  • The code is contained in the specific order in which
  • Unrefreshing sleep despite long duration of their major sleep periods
  • DM1 has a known genetic cause, so it gives researchers a solid place from which to start unraveling the mystery of pervasive sleep in IH. Moreover, the key group of DM1 scientists is substantial, and animal models for DM1 exist. Therefore, this offers a wonderful leveraging opportunity for two disease communities to assist one another. And funding from the Marigold Foundation is making this opportunity a reality. In September 2017, Emory University (Drs. David Rye, Andrew Jenkins and Gary Bassell) and University of Florida (Drs. Eric Wang and Maurice Swanson) researchers began interdisciplinary, patient-centered, collaborative investigations of hypersomnia as seen through the lens of DM1. The knowledge to be gained promises to be substantial and directly relevant to the development of novel diagnostic approaches and treatments for idiopathic hypersomnia and related disorders.

    What Have We Learned So Far?

    In looking for biologies shared by IH and DM1 patients, researchers did not have to wander far. One node of commonality that was quickly appreciated was centered upon By Abigail Piccolo, BS, and David Rye, MD, PhD, Chairperson,

  • Print Friendly, PDF & Email

    Myotonic Dystrophy Awareness Day 3rd Annual

    Myotonic Dystrophy International Awareness Day 2019

     

    We would love you to join in on our Third International Myotonic Dystrophy Awareness day. Spreading awareness of the condition to help raise support!

    We would love you to change your facebook and twitter profiles to our new awareness day logo. We are aiming to spread awareness of this condition all over social media for at least 24 hours, on the 27th July 2019!

    We would like the whole world to know about this rare condition. And you can help, by simply liking this page and changing your profile picture.

    If you would like to hold a fundraising event in conjunction with Awareness Day, please contact us on fundraising@cmmd.uk
    Alternatively, you could donate to the following page or using the DONATE button above – anything is appreciated, every £1 helps us move one step closer to funding life saving research!

    https://www.paypal.me/CureDMCIC

    Miles is in a bubble, as blowing bubbles is a great exercise to help with respiratory issues associated with DM/CDM. When we have our Cure DM Community meet-ups, we have bubbles for the children to play with.

    Please add your images and stories to the page below to help spread awareness.

    JOIN THE FIGHT!
    Print Friendly, PDF & Email

    French Myotonic Dystrophy Registry

    A new article gives good information on the breakdown of DM1 in the French population. 

    Fig. 3 Cartography of place of residence of enrolled DM participants. a The individual representation (N = 2875). Each dot refers to one patient
    place of residence and dots position is allocated to a random position in the corresponding department (top left). b The regional distribution
    according to the density of population (N = 2875). Darker the green is, more the DM is prevalent in the department (top right). c Distribution of
    DM-Scope Registry enrolled patients among paediatric French neuromuscular expert centres (26 centres, N = 255). The number of enrolled
    patients is spot-size dependent (bottom left). d Distribution of DM-Scope Registry enrolled patients among adult French neuromuscular expert
    centres (29 centres, N = 2620). The number of enrolled patients is spot-size dependent (bottom right)
    French-Registry-article-dm1-myotonic-dystrophy

    Print Friendly, PDF & Email