Because of the disease characteristics in DM1 and DM2, appropriate molecular testing and reporting is very important for the optimal counseling in myotonic dystrophy. Here, we describe best practice guidelinesfor clinical molecular genetic analysis and reporting in DM1 and DM2, including presymptomatic and prenatal testing.
Tag Archives: Dm2
Care Recommendations for Myotonic Dystrophy Type 2
The MDF recruited 15 international clinicians with long-standing experience in the care of DM2 patients to develop consensus-based care recommendations. The single text procedure was adopted. This process generated a 4-page Quick Reference Guide and a comprehensive 55-page document that provides care recommendations for DM2 patients.
Summary
The resulting recommendations will help standardize and improve care for DM2 patients and facilitate appropriate management in centers without neuromuscular specialists.
Extraordinary Gift will advance DM2 Research…. WOW!
Gift Will Advance Research on Myotonic Dystrophy Type 2
September 09, 2014
A $1.25 million gift from Lilyan (Lil) and Albert (Alfy) Nathan of Florida and Michael and Sherry Goldberg of Chicago will create a new center dedicated to research on myotonic dystrophy type 2 (DM2) at the University of Rochester School of Medicine and Dentistry. The gift will be used to support a new research program that will be led by UR Medicine neurologist Chad Heatwole, M.D.
Picture of DM2 Defect Leads to potential drug candidates
Scientists uncover most detailed picture yet of muscular dystrophy defect then design targeted new drug candidates
Scientists from The Scripps Research Institute have revealed an atomic-level view of a genetic defect that causes a form of muscular dystrophy, myotonic dystrophy type 2, and have used this information to design drug candidates with potential to counter those defects — and reverse the disease.
“This the first time the structure of the RNA defect that causes this disease has been determined,” said TSRI Associate Professor Matthew Disney, who led the study. “Based on these results, we designed compounds that, even in small amounts, significantly improve disease-associated defects in treated cells.”
Myotonic dystrophy type 2 is a relatively rare form of muscular dystrophy that is somewhat milder than myotonic dystrophy type 1, the most common adult-onset form of the disease.
Both types of myotonic dystrophy are inherited disorders that involve progressive muscle wasting and weakness, and both are caused by a type of genetic defect known as a “RNA repeat expansion,” a series of nucleotides repeated more times than normal in an individual’s genetic code. The repeat binds to the protein MBNL1, rendering it inactive and resulting in RNA splicing abnormalities — which lead to the disease.
Many other researchers had tried to find the atomic-level structure of the myotonic dystrophy 2 repeat, but had run into technical difficulties. In a technique called X-ray crystallography, which is used to find detailed structural information, scientists manipulate a molecule so that a crystal forms. This crystal is then placed in a beam of X-rays, which diffract when they strike the atoms in the crystal. Based on the pattern of diffraction, scientists can then reconstruct the shape of the original molecule.
Prior to the new research, which was published in an advance, online issue of the journal ACS Chemical Biology, scientists had not been able to crystallize the problematic RNA. The Scripps Florida team spent several years on the problem and succeeded in engineering the RNA to have crystal contacts in different positions. This allowed the RNA to be crystallized — and its structure to be revealed.
Using information about the RNA’s structure and movement, the scientists were able to design molecules to improve RNA function.
The new findings were confirmed using sophisticated computational models that show precisely how the small molecules interact with and alter the RNA structure over time. Those predictive models matched what the scientists found in the study — that these new compounds bind to the repeat structure in a predictable and easily reproducible way, attacking the cause of the disease.
“We used a bottom-up approach, by first understanding how the small components of the RNA structure interact with small molecules,” said Jessica Childs-Disney of TSRI, who was first author of the paper with Ilyas Yildirim of Northwestern University. “The fact that our compounds improve the defects shows that our unconventional approach works.”
Story Source:
The above story is based on materials provided by Scripps Research Institute. Note: Materials may be edited for content and length.
Journal Reference:
- Jessica L. Childs-Disney, Ilyas Yildirim, HaJeung Park, Jeremy R. Lohman, Lirui Guan, Tuan Tran, Partha Sarkar, George C. Schatz, Matthew D. Disney. Structure of the Myotonic Dystrophy Type 2 RNA and Designed Small Molecules That Reduce Toxicity. ACS Chemical Biology, 2013; 131216144058009 DOI: 10.1021/cb4007387
Living with Myotonic Dystrophy – Information for Patients and Families
Click here for Study/Article Living with Myotonic Dystrophy
This study was done in the Netherlands which has produced a lot of good information on Myotonic Dystrophy. This article can be shared with family members.